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Abstract
In this paper a non-relativistic particle moving on a hypersurface in a curved
space and the multidimensional rotator are investigated using the Hamilton–
Jacobi formalism. The equivalence with the Dirac Hamiltonian formalism
is demonstrated in both Cartesian and curvilinear coordinates. The energy
spectrum of the multidimensional rotator is equal to that of a pure Laplace–
Beltrami operator with no additional constant arising from the curvature of the
sphere.

1. Introduction

Constraint Hamiltonian systems play a crucial role in gauge theories. Since Dirac’s pioneering
work [1] on constrained systems, there has been considerable progress in this field [2–5].
Although some basic steps were taken, there are still some more problems which need deeper
analysis. Especially one should define the Dirac brackets explicitly to quantize second-class
constraints. But this is not an easy task, because except for very particular cases, for example
where the Dirac brackets are c-numbers, this problem does not have a general solution. In
other words, it is extremely difficult to find a representation for the independent operators.
Determination of degrees of freedom of a singular system is a vital problem especially if
second-class constraints exist. In fact, the reduced phase space is a symplectic manifold in
mathematical language [6] and the Darboux theorem ensures that one can find, at least locally,
the coordinates in terms of which the Poisson brackets (defined on the reduced phase space in
the presence of constraints) have the canonical form.

Quantization of a free point particle in curved space is a long-standing and controversial
problem in quantum mechanics [7, 8]. Dirac has emphasized that canonical quantization
rules are consistent only in a Cartesian reference frame. Attempts to generalize these
rules to curved space run into the notorious operator-ordering problem of momentum and
coordinates [1]. Podolski avoided this problem [9] by postulating that the Laplacian in the
free Schrödinger operator H = − h̄2�

2 should be replaced by the Laplace–Beltrami operator
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�LB = g
−1
2 ∂µg

1
2 gµν∂ν , where ∂µ = ∂

∂qµ
are partial derivatives with respect to the N -

dimensional curved space coordinates, and g is the determinant of the metric gµν(q).This
postulate has generally been accepted as being correct since it yields, for a N -dimensional

Cartesian space with coordinatesxi , an energy L̂2
a

2R2 . Here L̂a = −ip̂i(La)ij xj with p̂i = −ih̄ ∂
∂xi

are the unique quantum mechanical differential operator representation of the N(N+1)
2 generators

La of the rotation group SO(N + 1) in flat space [10]. A discrepancy with the Dirac formalism
has however been reported in several papers [8,10,11], as well as other different results [12,13].
In spite of all these developments, the status of the problem is very confusing, and there have
been many papers claiming a rejection of the Dirac formalism [10], an intrinsic difference
between path formulation and operator formalism [11], or advocating different quantization
schemes [12]. Besides, in the definition of the Wheeler–de Witt equation [14], which has
central importance in string theories, in curved space this problem arises again.

An alternative method of quantization is the Hamilton–Jacobi formulation initiated by
one of us [15–17]. Using the Carathéodory equivalent Lagrangian method we find a set of
Hamilton–Jacobi equations integrated by the method of characteristics [18,19]. Recently this
formalism was generalized to singular systems with higher-order Lagrangians and to systems
which have elements of the Berezin algebra [20–22]. Even more recently the quantization of
the systems with constraints was investigated using this approach [23–25]. The advantage of
using the Hamilton–Jacobi formalism is that we have no difference between first- and second-
class constraints and we do not need a gauge fixing term because the gauge variables are
separated in the process of constructing an integrable system of total differential equations. In
addition the action provided by the formalism can be used in the process of the path integral
quantization method of the constrained systems. However, the quantization of the systems
with second-class constraints is problematic for the Hamilton–Jacobi formalism because the
system of equations is not integrable. To solve this problem we have two basic possibilities:
the first one is to enlarge the phase space [26] and the other one is to keep to the original phase
space itself [27, 28].

Let us consider a singular Lagrangian with Hessian matrix of rank n− r . The formalism
leads us to the following Hamiltonians:

H ′
α = Hα(tβ, qa, pa) + pα (1)

where α, β = n − r + 1, . . . , n, a = 1, . . . , n − r . The usual Hamiltonian H0 is defined as

H0 = −L(t, qi, q̇ν, q̇a = wa) + pawa + q̇µpµ |pν=−Hν
, ν = 0, n − r + 1, . . . , n (2)

which is independent of q̇µ. Here q̇a = dqa
dτ , where τ is a parameter and ωa are obtained

from the definition of generalized momenta. The equations of motion are obtained as total
differential equations in many variables as follows:

dqa = ∂H ′
α

∂pa

dtα dpa = −∂H ′
α

∂qa
dtα dpµ = −∂H ′

α

∂tµ
dtα µ = 1, . . . , r (3)

dz =
(

−Hα + pa

∂H ′
α

∂pa

)
dtα (4)

where z = S(tα, qa) is the Hamilton–Jacobi function.
One should notice that although we have started with n generalized coordinates qi and

generalized velocities q̇i to pass to the canonical formulation we have to treat some generalized
momentum-dependent and corresponding generalized coordinates as free parameters. Thus,
we have a phase space of lower dimension, but this is not sufficient simply because the equations
of motion are total differential equations and we should consider integrability conditions. In
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other words equations (3) and (4) are integrable iff dHα
′ = 0. Some of these conditions could

be satisfied identically and the rest may cause new constraints. Again using the same test the
additional constraints might arise. As a result, it may happen that we have a set of constraints
which are in involution and an integrable system. Every new constraint causes reduction of
the dimension of the phase space. In the end we may have constraints in the form

H ′
0 = p0 + H0 H ′

γ = Hγ (tβ, qa, pa) + pγ (5)

and additional constraints which cannot be expressed in this form.
The equations of motion take the form

dqb = ∂H ′
0

∂pb

dτ +
∂H ′

γ

∂pb

dtγ (6)

dpb = −∂H ′
0

∂qb
dτ − ∂H ′

γ

∂qb
dtγ . (7)

Thus, we have an integrable system with some additional constraints.
The action can be obtained solving the following equation by quadratures:

dz =
(

−H0 + pa

∂H ′
0

∂pa

)
dτ +

(
−Hβ + pa

∂H ′
β

∂pa

)
dtβ . (8)

This paper is organized as follows.
In section 2 the non-relativistic particle moving on a hypersurface in a curved manifold is

investigated using the Hamilton–Jacobi formalism. The multidimensional rotator is analysed
and the results are compared with those obtained by the Dirac Hamiltonian formalism. In
section 3 the quantization of the multidimensional rotator is investigated. In section 4
concluding remarks are presented.

2. Hamilton–Jacobi formalism of the non-relativistic particle moving on a hypersurface
in a curved manifold

We consider a n-dimensional manifold equipped with the Riemannian metric gij (x). Let
xi(i = 1, 2, . . . , n) be the coordinates of the manifold. We consider a non-relativistic particle
of mass m whose motion is constrained on the hypersurface defined as [11]

f (x) = B (B = const). (9)

In the presence of the vector and scalar potentials Ai(x) and V (x), the Lagrangian is given by

L = 1
2gij ẋ

i ẋj + Aiẋ
i − V (x) + λ̇(f (x) − B). (10)

Here ẋi = dxi

dt and xi(t) denotes the position of the particle, λ is a Lagrange multiplier and

λ̇ = dλi

dt . The canonical momenta conjugate to xi and λ are

pi = mgij ẋ
j + Ai pλ = f (x) − B. (11)

This Lagrangian leads us to the following Hamiltonians:

H ′
0 = p0 +

1

2m
gij (pi − Ai)(pj − Aj) + V (x)

H ′
1 = pλ − f (x) + B.

(12)

The canonical equations are

dxi = gij

m
(pj − Aj) dt

dpi =
{

1

2m

∂glj

∂xi
(pl − Al)(pj − Aj) +

∂V

∂xi
− glj

m

∂Al

∂xi
(pj − Aj)

}
dt +

∂f

∂xi
dλ

dpλ = 0.

(13)
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Imposing the variations of (12) to be zero and taking into account (13) we find immediately
the consistency condition

df (x) = 0. (14)

Using (14) a new constraint arises

H ′
2 = gij

m

∂f

∂xi
(pj − Aj). (15)

Taking the variation of (15) and using (13) we obtain

1

m2

{
gkl
[

∂

∂xk

(
gij

∂f

∂xi

)
pj − ∂

∂xk

(
gij

∂f

∂xi
Aj

)]
(pl − Al) − 1

2

∂gkl

∂xi
gij

∂f

∂xj
pkpl

+
∂

∂xj
(gklAl)g

ij ∂f

∂xi
pk

}
− 1

m
gij

∂f

∂xi

∂V

∂xj
+
gij

m

∂f

∂xi

∂f

∂xj
λ̇ = 0. (16)

Solving (16) we find the Lagrange multiplier λ.
In order to compare our results with those obtained using Dirac’s procedure we analyse

the variations of H ′
0, H

′
1, H

′
2. Using

dH ′
1 = {H ′

0, H
′
1} dt

dH ′
2 = {H ′

0, H
′
2} dt + {H ′

0, H
′
1} dλ

(17)

we can prove easily that the integrability conditions of (13) are the same as Dirac’s consistency
conditions.

2.1. Multidimensional rotator

In order to clarify our method we will analyse in detail the multidimensional rotator problem.
The Lagrangian for a particle of unit mass constrained to move on the surface of an N -
dimensional sphere of radius R is given by the well known expression

L = 1
2 ẋαẋ

α − λ̇(xαx
α − R2) α = 1 . . . N (18)

where the constraint

f (x) = −xαx
α + R2 = 0 (19)

is implemented by the Lagrange multiplier λ̇. Using (12), (13), (15) and (18) we obtain a new
constraint

xαpα = 0 (20)

and an equation for λ:

λ̇ = pαp
α

2xαxα
. (21)

Here λ is a gauge parameter. To summarize we have the following set of Hamiltonians:

H ′
0 = p0 + 1

2pαp
α H ′

1 = pλ + xαx
α − R2 H ′

2 = xαpα. (22)

The transformation from Cartesian to curvilinear coordinates is defined as

x1 = r sin ϕ1 . . . sin ϕN−1 x2 = r sin ϕ1 . . . sin ϕN−2 cosϕN−1

xN−3 = r sin ϕ1 sin ϕ2 cosϕ3

· · ·
xN−1 = r sin ϕ1 cosϕ2 xN = r cosϕ1.

(23)
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In these new variables, the Lagrangian and the canonical momenta are given as

L = 1
2 (ṙ

2 + r2ϕ̇2
1 + · · · + r2ϕ̇2

N−1 . . . sin2 ϕN−2) + λ̇(−r + R) (24)

πλ = −r + R πr = ṙ πϕ1 = r2ϕ̇1 πϕ2 = r2sin2 ϕ1ϕ̇2

· · ·
πϕN−1 = r2 sin2 ϕ1 . . . sin2 ϕN−1ϕ̇N−1.

(25)

In the Hamilton–Jacobi formalism we have two Hamiltonians

H ′
0 = p0 +

1

2

(
π2
r +

π2
ϕ1

r2 sin2 ϕ1
+ · · · +

π2
ϕN−1

r2 sin2 ϕ1 . . . r2 sin2 ϕN−1

)

H ′
1 = πλ + r − R.

(26)

Using the consistency conditions dH ′
0 = 0 and dH ′

1 = 0 from (13) we obtain

dr = 0 dπr = 0. (27)

Taking into account (26) and (13) we have

dπr = − dλ +
1

r3

(
π2
ϕ1

sin2 ϕ1
+ · · · +

π2
ϕN−1

sin2 ϕ1 . . . sin2 ϕN−1

)
dt. (28)

From (27) and (28) we find

λ̇ = 1

r3

(
π2
r +

π2
ϕ1

sin2 ϕ1
+ · · · +

π2
ϕN−1

sin2 ϕ1 . . . sin2 ϕN−1

)
. (29)

In general the physical variables are nonlinear functions of the original variables of the
system. The separation of local coordinates into physical and pure gauge ones can be performed
by choosing the curvilinear coordinates in such a way that some of them span gauge orbits,
while the others change along the directions transverse to the gauge orbits and denote physical
states (for more details see [5,29]). As an example we consider the three-dimensional case, in
which the transformation from Cartesian to spherical coordinates is given as

x1 = r sin θ cosφ x2 = r sin θ sin ϕ x3 = r cos θ

π1 = sin θ cosϕπr + r cos θ cosϕπθ − r sin θ sin ϕπϕ

π2 = sin θ sin ϕπr + r cos θ sin ϕπθ + r sin θ cosϕπϕ

π3 = cos θπr − r sin θπθ

λ = λ πλ = pλ.

(30)

This transformation is a canonical transformation [18, 19]. The canonical pairs are now well
defined (r, πr), (θ, πθ ) and (φ, πφ).

The Hamiltonians have the following expressions:

H ′
0 = p0 +

π2
θ

2r2
+

π2
ϕ

2r2 sin2 θ
+
π2
r

2
H ′

1 = πλ + r − R

(31)

and using (31) we obtain the following canonical equations:

dr = πr dt dθ = πθ

r2
dt dϕ = πϕ

r2 sin2 θ
dt

dπr = − dλ +
1

r3

(
π2
θ +

π2
ϕ

sin2 θ

)
dt dπϕ = 0

dπθ = π2
ϕ

r2 sin3 θ
cos θ dt dπλ = 0.

(32)



78 D Baleanu and Y Güler

Imposing dH ′
0 = 0 and dH ′

1 = 0 we obtain H ′
2 = rπr = 0. Taking into account the

consistency condition obtained above and using (27) we find

λ̇ = 1

r3

(
π2
θ +

π2
ϕ

sin2 θ

)
. (33)

In this case the action has the following expression:

z = 1

2R2

∫ (
π2
θ +

π2
ϕ

sin2 θ

)
dt. (34)

3. Quantization of the multidimensional rotator

The multidimensional rotator is a system having second-class constraints in Dirac’s
classification of the constrained systems. The Hamilton–Jacobi formalism leads us to three
Hamiltonians, H ′

0, H
′
1, H

′
2, which are not in involution. At this stage we mention that it

is possible always to make the Hamiltonians in involution and then the corresponding new
system is integrable. In our specific problem we can apply the method of Abelian conversion
to transform the system into an Abelian gauge theory [30].

We found the Hamiltonians in involution:

H ′′
0 = p0 +

1

2

(
(H ′′

2 )
2

H ′′
1 + R2

+
L2
a

H ′′
1 + R2

)
H ′′

1 = pλ + xαx
α − R2 H ′′

2 = xαpα + 2x2λ

(35)

where La = −ipLax is the classical component of the angular momentum (with a = i, j ,
La = xipj − xjpi).

At the quantum level we obtainH ′′
0 . = H ′′

2 . = H ′′
1 . = 0, where. is the wavefunction.

The first-class constraints restrict the physical Hilbert to the gauge-invariant sector

H ′′
1 .phys = 0 H ′′

2 .phys = 0. (36)

The general solution of (36) has the following form:

.phys = f (λ, x2).(/) (37)

where f (x, λ) is some function, whereas .(/) is the wavefunction on the N -sphere. In the
physical Hilbert space, we make H ′′

1 , H
′′
2 zero in H ′′

0 . Taking into account (35) and (36) we
immediately find the energy values

El = h̄2

2R2
l(l + N − 1) (38)

and conclude that the quantum Hamiltonian for the multidimensional rotor is given by the pure
Schrödinger operator without any boundary term.

4. Concluding remarks

Despite the success of Dirac’s approach in studying singular systems, which is demonstrated
by the wide number of physical systems to which this formalism has been applied, it is always
instructive to study singular systems through other formalisms, since different procedures will
provide different views for the same problems, even for non-singular systems.

In the Hamilton–Jacobi formalism we have a set of partial differential equations to start
with, and we construct the phase space using the integrability conditions of a set of total
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differential equations. In this formalism we have no distinction between the first- and the
second-class constraints but the Dirac consistency conditions are equivalent to the Hamilton–
Jacobi integrability conditions.

In this paper the Hamilton–Jacobi formalism was applied to investigate a non-relativistic
particle moving on a hypersurface in a curved manifold and we found the same set of constraints
as by using Dirac’s approach. In the case of the multidimensional rotator we have eliminated
the non-physical degrees of freedom, transforming the Cartesian coordinates into curvilinear
ones. For the three-dimensional rotator a canonical transformation was performed in order to
find the physical degrees of freedom and the action was calculated.

As pointed in [10] the energy spectrum of the multidimensional rotator obtained by Dirac’s
quantization method must be rejected because it is physically incorrect. Using the fact that λ is
a gauge parameter in the Hamilton–Jacobi formalism we found the same result as in [10]. The
quantum Hamiltonian of the multidimensional rotor is given by the pure Schrödinger operator
without any boundary term.

As a further step we will apply this method to non-Abelian gauge theory and gravity. This
programme is under investigation, and this article is the first step in this direction.
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